2 research outputs found

    Numerical simulation of heat pipes in different applications

    Get PDF
    Nowadays heat pipes are considered to be popular passive heat transfer technologies due to their high thermal performance. The heat pipe is a superior heat transfer apparatus in which latent heat of vaporization is employed to transfer heat for an extended distance under a limited operating temperature difference. Numerical simulation of heat transfer devices is a principal step before implementing in real-life applications as many parameters can be tested in cost-and time-effective behaviors. The present study provides a review of the numerical simulations of various heat pipes in different applications such as cooling of electronic components, heating, ventilation, and air conditioning (HVAC), nuclear reactors, solar energy systems, electric vehicles, waste heat recovery systems, cryogenic, etc. Firstly, this work introduces a background about the main components of heat pipes such as an evacuated tube, wick, and working fluid. The fluid flow and thermal performance characteristics of heat pips are discussed, considering the optimum parameters. Finally, the critical challenges and recommendations for future work encountering the broad application of heat pipes are thoroughly studied

    Implementation of Artificial Intelligence in Modeling and Control of Heat Pipes: A Review

    No full text
    Heat pipe systems have attracted increasing attention recently for application in various heat transfer-involving systems and processes. One of the obstacles in implementing heat pipes in many applications is their difficult-to-model operation due to the many parameters that affect their performance. A promising alternative to classical modeling that emerges to perform accurate modeling of heat pipe systems is artificial intelligence (AI)-based modeling. This research reviews the applications of AI techniques for the modeling and control of heat pipe systems. This work discusses the AI-based modeling of heat pipes focusing on the influence of chosen input parameters and the utilized prediction models in heat pipe applications. The article also highlights various important aspects related to the application of AI models for modeling heat pipe systems, such as the optimal AI model structure, the models overfitting under small datasets conditions, and the use of dimensionless numbers as inputs to the AI models. Also, the application of hybrid AI algorithms (such as metaheuristic optimization algorithms with artificial neural networks) was reviewed and discussed. Next, intelligent control methods for heat pipe systems are investigated and discussed. Finally, future research directions are included for further improving this technology. It was concluded that AI algorithms and models could predict the performance of heat pipe systems accurately and improve their performance substantially
    corecore